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Software-defined networking (SDN) enables routing control to program in the logically centralized con-

trollers. It is expected to improve the routing efficiency even in highly dynamic situations. In this article,

we make an in-depth observation of practical Internet datasets and investigate the relationship between

betweenness centrality and network throughput. Furthermore, we propose a new routing observation factor,

differential ratio of betweenness centrality (DRBC), to denote the varying amplitude of betweenness centrality

to node degree. We reveal an interesting phenomenon that DRBC is proportional to the routing efficiency

when the maximum betweenness centrality varies in a small range. Based on this, a DRBC-based routing

scheme is proposed to improve routing efficiency. The experimental results verify that DRBC-based routing

can improve the network throughput and accelerate the routing optimization.
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1 INTRODUCTION

The Internet has grown to be a huge system, with nearly 65,000 Autonomous Systems (AS) as of

August 2019. An AS, the basic unit of the Internet, is further composed of a group of networks

operated by the network operators. As the number of ASes increases quickly, the scale of the In-

ternet becomes very large. The Internet must sustainably perform its primary function, routing

packets. The reported data show that the number of ASes increases by about 45 K every year [8].

Besides, the practical ASes have a range of variation in size. However, the Internet is not static due

to the failure of existing nodes, or the appearance of new ones. In such a huge network, updating

operations make the network topology change constantly, which further aggravates the complex-

ity of the Internet. Therefore, how to accurately characterize and model the dynamic attributes of

the Internet is very interesting and full of challenges [7, 17].

Network capacity is dependent on the network topology, routing, and node processing capacity,

which mainly depends on the computing and forwarding rate. Internet-like complex networks

can be measured by many metrics, such as betweenness centrality and clustering coefficiency. In

practical Internet, routing protocols are important on specifying how nodes communicate with

each other. Each AS has a single defined routing policy. Once a change occurs anywhere in the

Internet, the information about this event must diffuse to all ASes, which have to process it to

compute new routes distributively and quickly [3]. To achieve this task, different strategies have

been put forward, such as congestion control based on routing strategy [22], deflection routing

strategy [12], local dynamic routing strategy [35], global dynamic routing strategy [21], and so on.

However, most of them are still at the research stage and have not been put into practice.

Particularly, shortest-path algorithms are widely used in existing routing protocols [30, 46]. A

survey makes a comprehensive overview on routing optimization for the Internet traffic engi-

neering [34]. In such algorithms, each node attempts to route packets to their destinations over

paths of minimum distance and respond to topological changes periodically to adjust routing de-

cisions when traffic changes. Shortest-path routing algorithms have served remarkably well in the

network environment where the network topology changes slightly [42]. However, in a dynamic

network environment, shortest-path routing algorithms, particularly those that attempt to adapt

to traffic conditions, frequently exhibit oscillatory behaviors and cause performance degradation.

In some super large-scale and heterogeneous networks like the Internet, the widely used shortest

path strategy can easily cause transmission congestion due to the fast-growing network data when

the demands are greater than the supply. To this end, many advanced routing algorithms had been

well researched and thoroughly investigated [19, 37].

Software Defined Networking (SDN) provides an open platform for developing and manag-

ing the novel and advanced routing policies and network enforcement [26, 27]. SDN is a novel

networking paradigm that promises to dramatically simplify network management and enable

rapid network innovation and evolution [24, 29, 33]. Different from the rigid design of traditional

networks, SDN is featured by decoupling the forwarding hardware from control software. The

network intelligence can be logically centralized in the software-based controllers in the control

plane, and network devices become simple packet forwarding devices in the data plane that can

be programmed via an open interface [44]. In this way, SDN promotes to flexibly design an intel-

ligent control engine to achieve better Internet services. Although the field of SDN is quite recent,

it is growing at a very fast pace. SDN has been widely extended to many promising areas, such as

satellite network and vehicular network [13, 28, 40, 45].

Leveraging the power and flexibility of SDN, there are many researches on using topological

measurements to analyze and improve the performance of SDN. For examples, Yoon et al. consid-

ered using centrality measure for scalable traffic sampling to decide the traffic sampling rates at

the selected switches [41]. This scheme aims to enhance the intrusion detection performance in
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terms of malicious traffic flows. Hegr et al. introduced a novel metric, Quality of Alternative Paths

centrality (QAP), to quantify node surroundings and indicate more robust paths [14]. Rueda et al.

analyzed the critical parts of physical topology and selected the best controllers placement in SDN

for improving the network robustness to targeted attacks [31]. Kim et al. proposed a logically iso-

lated networking scheme to integrate distributed cloud resources to dynamic and on-demand vir-

tual networking over software-defined wide area network (SD-WAN) [16]. However, these works

focus on different technical issues in SDN, such as traffic sampling [41], path robustness [14], at-

tack avoidance [31], and virtual networking [16]. To the best of the authors’ knowledge, there

is little work focusing on investigating the novel data-driven network patterns to ameliorate the

SDN controller to make efficient routing decisions. Therefore, it becomes very necessary to explore

the novel objective network patterns based on the practical Internet datasets, which have a potential

to assist to make proper routing decisions as well as reduce the cost of global routing management.

This work is motivated by one of the most recent works [23], which surveys the large volumes

of router reachability data and proposes a useful indicator for understanding the dependence of

the AS-level Internet on individual routers. The authors finally quantify the resulting impact of

each router outage on global Border Gateway Protocol (BGP) reachability. In this work, we fo-

cus on investigating the relationship between the betweenness centrality and routing throughput

based on the practical network topology datasets. We propose a new routing observation factor,

differential ratio of betweenness centrality (DRBC), and reveal an interesting phenomenon that

DRBC is proportional to the routing efficiency when the maximum betweenness centrality varies

in a small range. Some primary tests are finally introduced to verify the availability in the routing

optimization. The main contributions are summarized as follows:

• We first define a new routing observation factor, differential ratio of betweenness centrality

(DRBC, ∇B ), which is represented by making a Difference for the betweenness centrality.

According to the theory of complex networks, we formulate the models for the DRBC metric

and network throughput, respectively.

• We conduct extensive experiments to analyze the relation between DRBC and network

throughput based on the practical network topology dataset from CAIDA [4] and try to

find whether there is any law the two metrics follow. Interestingly, we find a hidden indi-

cator that the DRBC metric is positively proportional to network throughput on condition:

The maximum betweenness centrality of a network graph keeps constant or changes very

slightly. This law can be used to indicate routing efficiency intuitively and guide to make

routing adjustment.

• We take an application case to show the DRBC-based routing optimization adjustment. We

propose a DRBC-based software defined routing scheme, which guides how to adjust rout-

ing path to improve the network throughput based on the DRBC metric. Some primary tests

verify DRBC can be applied to control routing in the software defined network controllers

and DRBC-based routing can accelerate the routing optimization.

This article is organized as follows: Section 2 lists related works briefly. Section 3 introduces the

theoretical modeling and analysis. Section 4 describes the big network datasets used in this work.

Section 5 presents the data observations and analysis. Section 6 introduces a brief application case

of routing control and shows its efficiency. We conclude this article in Section 7.

2 RELATED WORKS

An increasing number of scholars have devoted themselves to the advanced and efficient rout-

ing in complex networks to improve the network efficiency and scalability. Kirst et al. proposed

a dynamic information routing mechanism to route information on top of collective dynamical
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Fig. 1. Illustrations of graph samples.

reference states to achieve flexible information routing in complex networks [7]. Ling et al. pro-

posed a global dynamic routing strategy for network systems based on the information of the

queue length of nodes to improve the traffic capacity [21]. Lin et al. proposed three advanced al-

gorithms to improve the efficiency of local routing strategies [19]. Kawamoto et al. proposed a

new efficient heuristic algorithm to balance the network traffic by achieving the minimization of

the maximum betweenness [15]. Yan et al. considered the possible congestion in the nodes along

actual paths that can be resolved by redistributing traffic load in central nodes to other non-central

nodes [39]. Holterbach et al. presented a fast-reroute framework enabling routers to restore con-

nectivity in a few seconds [32]. However, all above works focus on designing the routing policies

based on the heuristic experience or a certain consideration. It is lack of a general analysis from

the practical observation of Internet datasets.

However, routing strategies and technologies have been well investigated in SDN [1, 11]. Zeng

et al. first evaluated the performance of a mainstream software-defined routing platform named

RouteFlow [43]. Destounis et al. proposed two routing control policies for SDN controllers to min-

imize the time-average routing cost while respecting a network reconfiguration budget [9]. Lin

et al. proposed a simulated annealing-based QoS-aware routing (SAQR) algorithm that can adap-

tively adjust weights of delay, loss rate, and bandwidth in a cost function to find the best fit path

[20]. Kharkongor et al. proposed an efficient routing protocol that considers the energy consump-

tion of heterogeneous devices in software-defined IoT [5]. Lee et al. proposed a segment routing

algorithm for SDN that considers the balance of traffic load and reduces the extra cost of packet

header size [18]. However, all above works do not consider the data-driven routing optimization

leveraging on the power of practical Internet data.

As the amount of network data increases, big data analysis is expected to efficiently guide the

routing decision [6, 36]. To this end, this work is driven by the practical Internet datasets and finds

a hidden indicator for routing efficiency through a series of experimental analysis. A data-driven

software defined routing scheme is also proposed to improve the network performance and reduce

the routing management cost.

3 MODELING AND ANALYSIS

To analyze the practical Internet topology data, we first should comprehend some basic models.

The central points of the complex network have often been identified using graph-based theoretical

centrality measures.

We model the Internet as a graph G = (V ,E) whereV = {v1,v2,v3 . . .} is the set of vertices and

E = {e1, e2, e3 . . .} is the set of edges (unordered pairs of vertices). Let euv denote the edge that

connects node u and nodev (u,v ∈ V ). If for each edge euv , (u,v ) = (v,u), then the graph is called

an undirected graph. If (u,v ) � (v,u), then the graph is a directed graph. A path is a sequence

of vertices, such that there is an edge in E between all consecutive pairs of vertices. A geodesic

between u and v is a path containing a fewest possible number of vertices; the number of edges

of a geodesic between u and v is called a distance d (u,v ). In Figure 1, (a) is an undirected graph

ACM Transactions on Internet Technology, Vol. 19, No. 4, Article 50. Publication date: October 2019.



Betweenness Centrality Based Software Defined Routing 50:5

and (b) is a directed graph. In Figure 1(a), the distance between B and C is one hop, therefore

d (B,C ) = d (C,B) = 1. As Figure 1(b) is a directed graph, thus d (C,B) = 1, but d (B,C ) = +∞ (that

is, the path from B to C is unreachable).

A node degree is the most fundamental measure of a node in a network. Here, the degree of a

node i is simply defined to be the number ki of its existing edges. Thus, as shown in Figure 1(a),

kA = 1,kB = 2,kC = 1. In Figure 1(b), kAout
= 1, kBin

= 2, kCout
= 1. Furthermore, let k̃ denote the

average node degree; it is the average value of all node degrees ki . It is clear that

k̃ =
1

N

∑

i ∈V
ki (in,out )

, (1)

where N is the total number of nodes in the node set V .

Thus, in Figure 1(a) and (b), the average degree is 4/3.

Weighted graphs (namely, edges) have weight values in a graph and are very common in

complex networks. For each edge ei j , we define its weight as wi j . For example, in Figure 1(c),

wAB = 1,wBC = 2. In practice, the weights are correlated with node degrees, edges, and other met-

rics, respectively. In this article, wi j is defined as follows:

wi j = ki
α × kj

β , (2)

where α and β are the variable parameters to indicate the correlation coefficient between the

degree of nodes i, j and the weight of edge ei j . For example, if α is bigger than β , the weight of

edge ei j will be easier affected by the degree of node i than node j.
Assuming a path from the node i to node j is Pi j = {v1,v2, . . . ,vn } and vx is a node included in

the path. L(Pi j )
(α,β ) represents the sum of the weights of a path from node i to node j with variable

parameters α and β . The equation is as follows:

L(Pi j )
(α,β )=

n−1∑

m=1

wm,m+1 =

n−1∑

m=1

(
kα

m × k
β
m+1

)
. (3)

For any two nodes, we can obtain many Pi j . We define the node set that makes L(Pi j )
(α,β ) minimum

as the shortest path. On the Internet, we always want to send packets at minimum cost, i.e., making

L(Pi j )
(α,β ) as small as we possibly can. As shown in Figure 1(d), the shortest path from A to C is

the path {A,B,D,C}.
Next, we present the theoretical analysis of the relationship between network throughput and

betweenness centrality.

Differential Ratio of Betweenness Centrality: Betweenness centrality is used in complex

networks to estimate the importance of a node. The betweenness of node i is as follows:

B (i ) =
∑

o�q

σoq (i )

σoq
, (4)

where σoq is the number of all shortest paths from a node o to node q and σoq (i ) is the number of

shortest paths from a node o to node q going through i .
Specifically, in a scale-free network, different nodes have different degrees. We divide nodes into

several groups according to their degree. All nodes with the same degree will belong to the same

group. Let Bk denote the average betweenness of nodes with the same degree. Then, the average

betweenness of nodes with a degree k is defined as follows:

B̃k =
1

Nk

∑

i ∈Vk

B (i ), (5)

where Nk is the number of the nodes in the set Vk , B (i ) is the betweenness of the node i .
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Based on this, we can present the parameter of the average differential ratio of betweenness

centrality, denoted by ∇B . It shows the increasing rate of betweenness.

The equation for ∇B is:

∇B =
1

N 2

∑

k ∈Vk ,k ′ ∈Vk′

B̃k ′ − B̃k

k ′ − k , (6)

wherevk is a node with degree of k ,v ′
k

is a node with degree of k ′, N is the total number of nodes

in the node set V , and ∇B is the average differential ratio of betweenness centrality.

Network throughput: For the node set Vk in which each node has a degree k , the network

throughput is denoted by the average amount of packets with the following equation:

W̃ k (t ) =
1

Nk

∑

i ∈Vk

Wi (t ), (7)

where Nk is the number of the nodes in the set Vk ,Wi (t ) is the number of current packets in the

node i , and
∑

i ∈Vk
Wi (t ) is the number of total packets in the set Vk .

Let λk denote the average packet generation rate of nodes whose degree is k . It is a measure of

the packet generation rate by the host nodes and is defined as follows:

λk =
1

Nk

∑

i ∈Vk

λi , (8)

where λi is the packet generation rate of the node i .
When the network is about to reach a congestion, the increasing rate of packets in the network

is zero, and the packet generation rate is the same as that of network throughput. We have

d

dt
W (t ) = ρλNk −

W (t )

τ̃ ∗ (t )
= 0, (9)

where ρ is the proportion of host node.

On this condition, we can use λk to denote the network throughput. It is easy to get:

ρ
∑

k ∈K
λkNk =

∑
k ∈K W̃ k∗ (t )Nk

τ̃ ∗ (t )
, (10)

where K is the set of all node degrees and W̃ k∗ (t ) is the average amount of network throughput

of nodes in the set Nk when the network arrives at a critical congestion state.

Besides, average transmission time depends on average transmission distance and forwarding

time. It is defined by:

τ̃ ∗ (t ) ≈ D̃ + D̃
∑

k ∈K
Nk B̃

k W̃
k∗ (t )

Rk
, (11)

where Rk is the forwarding rate of the nodes with a degree of k , D is the transmission distance,

and D̃ is the average value of D.

When the network arrives at a critical congestion state, the queue is at its max length:

W̃ k∗ ≈ Lk , (12)

where Lk is the max queue length of nodes in Vk .

According to Equations (9), (10), (11), and (12), it is easy to get:

∑

k ∈K
λkNk =

∑
k ∈K LkNk

ρD̃
(
1 +
∑

k ∈K Nk B̃k Lk

Rk

) . (13)
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Table 1. Internet Topological Data Statistics (2007–2015)

Data N E K_max K_ave d C r

2007 26,955 74,499 2,753 5.528 3.79 0.261 −0.198

2008 30,018 82,630 2,632 5.505 3.786 0.267 −0.216

2009 33,017 94,073 2,591 5.698 3.812 0.257 −0.225

2010 36,111 10,2310 2,939 5.666 3.836 0.252 −0.215

2011 39,703 122,580 3,330 6.175 3.818 0.265 −0.218

2012 42,847 138,306 3,703 6.456 3.825 0.258 −0.213

2013 45,427 159,049 4,137 7.002 3.805 0.266 −0.205

2014 46,085 175,538 4,306 7.618 3.763 0.279 −0.223

2015 52,351 204,401 4,765 7.809 3.799 0.272 −0.233

The network throughput of nodes in Vk is defined by λk :

λkNk ∝
LkNk

ρD̃
(
1 +
∑

k ∈K Nk B̃k Lk

Rk

) . (14)

The network throughput of nodes λc depends on the minimum of λk , approximately:

λc ∝ min
k ∈K

RkLk

ρD̃ (Rk + Nk B̃kLk )
. (15)

Network throughput is an important evaluation parameter for the routing strategy. As is well

known, given a network topology, the better the routing strategy is, the greater the network

throughput is.

Now, we can calculate the λc for each network graph. Based on the above theoretical model in

Equation (15), we can formulate the network throughput dependent with betweenness centrality.

We believe that a significant task is to optimize the network throughput based on network metrics

including betweenness centrality and differential ratio of betweenness centrality. In the following

sections, we will focus on exploring some useful laws of improving network throughput based on

the observations of practical Internet datasets.

4 NETWORK DATASET DESCRIPTIONS

The Internet has many special features, such as super-large scale, isomerous, distributed deploy-

ment, so there is underlying difficulty in obtaining accurate and complete Internet topologies.

Alternatively, partial network datasets can be collected and built by leveraging some efficient ac-

tive probing techniques [41]. These datasets will stimulate the researchers to make novel findings,

assumptions, and analyses for the practical Internet.

In this article, we adopt the network topology data from CAIDA project [4]. It is the most fa-

mous project for measuring network topology. The CAIDA network topology data are collected by

30 measure points distributed extensively. The topology is approved in the scientific community.

We selected the real-world topology data from 2007 to 2015 as our raw materials. Then, we use

the Networkx tool in Python to analyze these data to build the experimental dataset [25]. To further

observe the varying pattern of Internet topology data during these years, we make a study of some

key parameters of Internet topological data. Table 1 shows the summary information of dataset

collections. Figure 2 shows the varying number of edges, nodes, and maximum degrees in Internet

topological data during the years 2007 to 2015. Figure 3 shows the varying number of average

degree and average shortest path. In this table, N is the total number of nodes, E is the number

ACM Transactions on Internet Technology, Vol. 19, No. 4, Article 50. Publication date: October 2019.
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Fig. 2. Internet topological data: (a) number of edges and nodes and (b) maximum degree.

Fig. 3. Internet topological data: (a) average degree and (b) average shortest path.

of edges, Kmax is the max degree of nodes, Kave is the average degree of nodes, d is the average

shortest path length, C is the average clustering metric, and r is the average degree correlation. It

is not difficult to find the features of the Internet:

• The size of the Internet grows continuously. We can see a clear growth of the number of

network nodes and edges at the AS level, shown in Figure 2(a).

• The maximum node degree is relatively stable during 2007–2009. However, it increases lin-

early from 2010–2015, as shown in Figure 2(b).

• Similarly, the average node degree in the AS level has little change during 2007–2010. How-

ever, it increases greatly from 5.6 to 7.8 during 2010–2015, shown in Figure 3(a).

• The average shortest path length presents a steady trend. In Figure 3(b), it maintains in a

relatively small range of (3.76, 3.84).

All above observations indicate that the Internet has a small world effect. Although the scale of

the Internet continues to expand, the changing amplitude of the average shortest path length is not

obvious. Except for the above observations, there are many hidden inherent rules to be explored.

As introduced in Section 3, the betweenness centrality is used to indicate the importance of a node

in a network. Therefore, one straightforward question is whether there is any potential relation-

ship between the betweenness centrality and the routing efficiency. Furthermore, how does the

changing rate of betweenness centrality, i.e., DRBC, affect the network throughput? The answer

should be from the in-depth observation of practical Internet Datasets. In the following section,

we will make a further in-depth investigation on these Internet datasets.

ACM Transactions on Internet Technology, Vol. 19, No. 4, Article 50. Publication date: October 2019.
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Fig. 4. Betweenness Centrality: (a) α = 0.1, β = 0.6. (b) α = 0.1, β = 0.7. (c) α = 0.1, β = 0.8. (d) α = 0.1,

β = 0.9.

5 DATA PROCESS AND ANALYSIS

This section presents our experimental analysis. To simplify the experiment process, we select a set

of samples in the datasets. We choose the data samples following a principle [2]: The distribution

of degrees of the selected networks approximately satisfies:

p (k ) = k−3, (16)

where p (k ) is appearance probability of nodes with a degree of k .

To answer the questions proposed in Section 4, we conduct two separate experimental observa-

tions to reveal the relationship of betweenness centrality, node degree, DRBC metric, and network

throughput.

Experimental observation 1: Relationship of betweenness centrality and node degree

According to Equation (2), the weight of an edge is correlated with the degrees of nodes i and j.
The variable parameters, α and β , directly affect the shortest path routing policy. To this end, we

first select different values for α and β . In this experiment, we perform four sets of tests, in each

of which α is same but β is different. With the knowledge of a pair of α and β , we add weight to

the directed graph according to Equation (2). Then, we use the shortest path algorithm to calculate

the betweenness centrality of nodes. Finally, we obtain a set of data for betweenness centrality in

different cases and analyze the relationship of the betweenness centrality and node degree.

Figures 4–7 show the relationship between degree and betweenness of the four cases. As we

can see in the figures, there are more nodes of which the degree is below about 50, satisfying the

distribution proposed at the beginning of this part. The two numbers in each figure are the mean

and variation of the average data. These figures show the results have almost similar mean and

ACM Transactions on Internet Technology, Vol. 19, No. 4, Article 50. Publication date: October 2019.
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Fig. 5. Betweenness Centrality: (a) α = 0.2, β = 0.6. (b) α = 0.2, β = 0.7. (c) α = 0.2, β = 0.8. (d) α = 0.2,

β = 0.9.

variation in the same set, but have quite a different mean and variation compared with the figures

in other sets. Tables 2–5 present the detailed experimental results, including the max betweenness.

∇B is the average differential ratio of Betweenness, and λc is the Critical packet generation rate,

which represents the network throughput [19]. From the results in these four tables, we can see

that the max betweenness in the same table has jitter in a very small range.

Experimental observation 2: Relationship between DRBC metric and network throughput

In this experiment, we mainly observe the relationship between the DRBC metric and the net-

work throughput. We need to calculate the DRBC metric. Equation (6) defines the DRBC parameter.

In practice, we need to select a topology dataset and give a routing strategy. In our experiment, we

first add weight on the directed graph and use the normal shortest path (Dijkstra) algorithm to cal-

culate the betweenness centrality of nodes. Then, we can further get the knowledge of the average

differential ratio of betweenness centrality according to observing the relationship of betweenness

centrality and node degree.

The algorithm for the average differential ratio of betweenness centrality is summarized based

on Equation (6). Similar to Experiment 1, this experiment also has four observations where both

the max betweenness centrality and the parameter α vary. It is noteworthy that in each case, the

max betweenness centrality should be a constant or only has a very small change; it is because a

change of the max betweenness centrality may bring a drastic and unpredicted jitter to the network

structure. Then, we can get the average differential ratio of betweenness and network throughput

and plot the corresponding figures of the relationship between them. Figure 8 shows the relation-

ship between ∇B and λc . We can see the greater ∇B is, the greater the network throughput will be
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Fig. 6. Betweenness Centrality: (a) α = 0.3, β = 0.6. (b) α = 0.3, β = 0.7. (c) α = 0.3, β = 0.8. (d) α = 0.3,

β = 0.9.

in four cases of α = 0.1, 0.2, 0.3 and 0.4. The values of max betweenness are kept as 0.024, 0.013,

0.01, and 0.008 for four cases with α = 0.1, 0.2, 0.3, and 0.4.

Based on this observation, we reveal a hidden but interesting indicator that the DRBC met-

ric is positively proportional to network throughput. However, it requires a precondition: The

maximum betweenness centrality of a network graph keeps as a constant (or with a very small

change). This law can indicate routing efficiency intuitively and guide to make routing adjustment.

In other words, when the maximum betweenness centrality keeps as a constant, we can use the

DRBC metric to indicate the routing efficiency. For example, we can keep the maximum between-

ness centrality unchanged and improve the routing efficiency and total network throughput by

adjusting the DRBC metric. In the following section, we will show how to use this finding to guide

routing adjustment to improve the routing efficiency.

6 APPLICATION CASE: DRBC-BASED SOFTWARE DEFINED ROUTING

In this section, we introduce an application case to show the DRBC-based software defined routing.

In this application, a centralized software defined controller is employed to manage and update

the routing policies [10]. Since the controller has the global network information, such as network

topology and network status, it can calculate the routing policies quickly and efficiently, then

distribute these updated policies to connected routers or switches. Figure 9 shows the topology

of the practical test network, which includes 15 nodes numbered by 0–14. Random links are built

among these nodes, as shown in the figure. There is no link between some pair of nodes. Based

on the above analysis, to improve the network throughput, the network routing selection should

increase the DRBC metric as much as possible; that is, two conditions need to be met: (1) the DRBC
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Fig. 7. Betweenness Centrality: (a) α = 0.4, β = 0.6. (b) α = 0.4, β = 0.7. (c) α = 0.4, β = 0.8. (d) α = 0.4,

β = 0.9.

Table 2. The Detailed Result Data (α = 0.1)

α β Max betweenness ∇B λc

0.1 0.4 0.024 0.73 139

0.1 0.5 0.024 0.66 135

0.1 0.6 0.024 0.57 130

0.1 0.7 0.024 0.49 125

0.1 0.8 0.024 0.46 121

0.1 0.9 0.025 0.45 115

value should be nonnegative; (2) the DRBC value should keep stable. Therefore, the DRBC-based

routing adjustment process is summarized as follows:

• First, we should set initial values for α and β ; for example, α = 0.3 and β = 0.6. Then, we

calculate the average betweenness centrality for different node degree. Figure 10 shows

the relationship between average betweenness centrality and node degree. As the baseline,

we use the optimal shortest path based routing algorithm [30]. In this figure, we can see

the curve is not linear, which means a great improvement can be achieved through the

DRBC-based software defined routing. When the curve is approximately linear, the average

gradient becomes the biggest when the maximum of betweenness centrality is a certain

value. In this case, the average DRBC will become the optimal.

• In step 2, we try to increase the average betweenness of nodes whose degree is 3. We look

for the nodes with degree 3 in this test network, which are nodes 1, 5, and 7. Then, we
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Table 3. The Detailed Result Data (α = 0.2)

α β Max betweenness ∇B λc

0.2 0.4 0.013 0.27 144

0.2 0.5 0.013 0.18 131

0.2 0.6 0.013 0.13 120

0.2 0.7 0.013 0.06 111

0.2 0.8 0.014 0.03 103

0.2 0.9 0.014 0.01 98

Table 4. The Detailed Result Data (α = 0.3)

α β Max betweenness ∇B λc

0.3 0.4 0.009 −0.06 111

0.3 0.5 0.009 −0.1 101

0.3 0.6 0.01 −0.15 94

0.3 0.7 0.01 −0.19 86

0.3 0.8 0.01 −0.24 81

0.3 0.9 0.011 −0.28 76

Table 5. The Detailed Result Data (α = 0.4)

α β Max betweenness ∇B λc

0.4 0.4 0.007 −0.19 89

0.4 0.5 0.007 −0.24 82

0.4 0.6 0.008 −0.27 76

0.4 0.7 0.008 −0.3 70

0.4 0.8 0.008 −0.37 63

0.4 0.9 0.009 −0.37 63

decrease the weight of edges around nodes 1, 5, and 7. As a result, the average betweenness

of nodes with degree 3 does not increase, but the average betweenness of nodes with degree

2 decreases. After this routing adjust, the curve has tended to be more linear. Figure 11 shows

the results after the step 2 adjustment.

• In step 3, we try to decrease the average betweenness of nodes with degree 5 to increase the

DRBC metric. We look for the nodes with degree 5 in this test network, which are nodes

2, 6, 9, 11, 12, and 13. Then, we increase the weight of edges around these nodes. Figure 12

shows the results after the step 3 adjustment. In this figure, we can see the curve becomes

more linear than that before the second routing adjust.

• In step 4, we try to decrease the average betweenness of nodes whose degree is 4. We look

for the nodes with degree 4 in this test network, which are nodes 0, 4, 8, and 10. Then, we

increase the weight of edges around these nodes. Figure 13 shows the results after the step

4 adjustment. We can see that the curve has approached exactly linear.

After these four adjust steps, this DRBC-based software defined routing tends to be stable. We

finally obtain an approximately optimized value for the DRBC metric, as shown in Figure 13, where

the DRBC value is nonnegative and also tends to be stable in four steps.
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Fig. 8. Relationship between ∇B and λc .

Fig. 9. The smaller experiment network topology with 15 nodes.

We compare the network throughput λC during the routing adjustment based on the Equa-

tion (15). Figure 14 shows the varying of network throughput λC in the four adjust steps. We can

see the network throughput increases with each routing adjustment. The network throughput in-

creases step-by-step (from 68 to more than 110) during the DRBC-based software defined routing,

which verifies DRBC can well indicate the routing efficiency and guide the routing optimization

in the next generation Internet system.

It is noted that this experiment shows how to improve the routing efficiency according to the

DRBC-based routing adjustment. Therefore, we focus on comparing the performance without and
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Fig. 10. Betweenness centrality during the routing adjust (baseline).

Fig. 11. Betweenness centrality during the routing adjust (step 2).

Fig. 12. Betweenness centrality during the routing adjust (step 3).

with DRBC-based routing enhancement. Based on this, we use the shortest-path-based routing

algorithm [30] as the baseline.

To further verify the efficiency of the DRBC-based software defined routing, we test its perfor-

mance in two larger size of the networks. The two large network topologies include 25 nodes and

35 nodes, respectively, which are shown in Figure 15. We also compare the network throughput

in the different routing adjustment steps. The results are shown in Figure 16. We can see the net-

work throughput increases step-by-step in both cases during the DRBC-based software defined

routing. It shows that DRBC can guide the routing optimization in larger-size networks. Although

we test the performance in only three different network sizes, we believe the DRBC-based soft-
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Fig. 13. Betweenness centrality during the routing adjust (step 4).

Fig. 14. Network throughput during the four adjust steps (with 15 nodes).

Fig. 15. The larger experiment network topology with 25 nodes and 35 nodes.

ware defined routing can also work efficiently in other size of networks. Besides, it is noteworthy

that we only show a routing adjustment scheme to optimize the DRBC metric to improve the

network throughput in this application case. The proposed method can be easily extended and ap-

plied to more application cases, such as using different routing adjustment and improving network

reliability.
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Fig. 16. Network throughput during the four adjust steps (with 25 and 35 nodes).

7 CONCLUSION

This article is motivated by exploring the hidden laws for the software defined routing based

on the practical Internet data. An in-depth observation is made to investigate the relationship

among betweenness centrality, node degree, and network throughput. In particular, a new metric,

differential ratio of betweenness centrality, is proposed to indicate the routing efficiency. It can

denote the varying amplitude of betweenness centrality to node degree. Experimental results show

that the metric is proportional to the routing efficiency if the maximum of betweenness centrality

keeps constant or changes in a small range. This interesting law can be used to improve the routing

efficiency in the next generation Internet and reduce the overhead of routing management. In

future work, we will further analyze the advanced learning methods [38] to improve the SDN

routing management efficiency.
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